[:en]Uni Bonn: Ultrashort laser pulses make greenhouse gas reactive[:de]Uni Bonn: Ultrakurze Laserpulse machen Treibhausgas reaktionsfreudig[:]

[:en]

Ultrashort laser pulses make greenhouse gas reactive. Researchers at the University of Bonn are using light to produce a highly reactive variant of carbon dioxide.

It is a long-cherished dream: Removing the inert greenhouse gas carbon dioxide from the atmosphere and using it as a basic material for the chemical industry. This could address two major problems at once by containing climate change and at the same time reducing the dependence on oil. Physico-chemists at the University of Bonn are in the process of making significant contributions to this vision. They have discovered a new way to create a highly reactive form of carbon dioxide with the help of laser pulses. The results have been published online in advance and will soon be presented in the printed edition of the journal “Angewandte Chemie”.

Every day, nature shows humans how to elegantly bind carbon dioxide from the air and transform it into a much-needed raw material. Plants perform photosynthesis with their green leaves when exposed to light. Oxygen and the much-needed energy and nutrient supplier sugar are created from carbon dioxide and water with the help of sunlight.

“Scientists have been striving to mimic this model for a long time, for instance in order to use carbon dioxide for the chemical industry,” says Prof. Dr. Peter Vöhringer from the Institute for Physical and Theoretical Chemistry of the University of Bonn. What makes the concept hard to implement is that it is very difficult to push carbon dioxide into new partnerships with other molecules.

With his team, the physico-chemist has now discovered a new way of generating a highly reactive variant of the inert and hard-to-bind greenhouse gas. The researchers used a so-called iron complex: The center contains a positively charged iron atom, to which the constituents of the carbon dioxide are already bound multiple times. The scientists shot ultrashort laser pulses of ultraviolet light onto this iron complex, which broke certain bonds. The resulting product was a so-called carbon dioxide radical, which also forms new bonds with a certain radicality.

Such radicals have a single electron in their outer shell that urgently wants to bind permanently to another molecule or atom. “It is this unpaired electron that distinguishes our reactive radical anion bound to the central iron atom from the inert carbon dioxide and makes it so promising for chemical processes”, explains lead author Steffen Straub from Vöhringer’s team. The radicals could in turn be the building blocks for interesting chemical products, such as methanol as a fuel or urea for chemical syntheses and salicylic acid as a pain medication.

Spectrometer shows molecules at work

With their laser and infrared spectrometer, a large apparatus in the basement of the institute, the scientists watch the molecules at work. The spectrometer measures the characteristic vibrations of the molecules, and this “fingerprint” allows them to identify the bonds between different atoms. “The formation of the carbon dioxide radical within the iron complex changes the bonds between the atoms, which reduces the frequency of the characteristic carbon dioxide vibration”, explains Straub.

With forensic instinct, the scientists were able to prove that the laser pulses really do produce the reactive carbon dioxide radical. First, the team simulated the vibrational spectra of the molecules on the computer, then compared the calculations to the measurements. The result: Simulation and experiment were indeed an excellent match. Like a “molecular motion picture”, the spectrometer took “snapshots” in the unimaginable temporal resolution of millionths of a billionth of a second. On the basis of the spectra, which correspond to the individual images of a film, it can thus be revealed – essentially in slow motion – how the iron complex deforms under pulsed laser illumination over several stages, the bonds break up and finally the radical is formed.

“Our findings have the potential to fundamentally change ideas about how to extract the greenhouse gas carbon dioxide from the atmosphere and use it to produce important chemical products”, says Vöhringer. However, suitable catalysts would still have to be developed for industrial use because laser pulses are not efficient for large-scale conversion. “Nonetheless, our results provide clues as to how such a catalyst would have to be designed”, adds the scientist. The current study fits in with the multidisciplinary key profile areas on sustainability as well as matter research at the University of Bonn.

Publication: Steffen Straub, Paul Brünker, Jörg Lindner, and Peter Vöhringer: An Iron Complex with a Bent, O-Coordinated CO2-Ligand Discovered by Femtosecond Mid-Infrared Spectroscopy, Angewandte Chemie (DOI: 10.1002/ange.201800672) und Angewandte Chemie International Edition (DOI: 10.1002/anie.201800672)

Source: Press release University of Bonn, 15.03.2018[:de]

Ultrakurze Laserpulse machen Treibhausgas reaktionsfreudig. Forscher der Uni Bonn erzeugen mit Hilfe von Licht eine hochreaktive Variante von Kohlendioxid.

Es ist ein lang gehegter Traum: Das träge Treibhausgas Kohlendioxid aus der Atmosphäre entfernen und es als Grundstoff für die chemische Industrie nutzen. Damit könnten gleich zwei große Probleme auf einmal angegangen werden, indem der Klimawandel eingedämmt und die Abhängigkeit von Erdöl reduziert wird. Physikochemiker der Universität Bonn sind im Begriff, zu dieser Vision wesentliche Beiträge zu leisten. Sie haben einen neuen Weg entdeckt, wie mit Hilfe von Laserpulsen eine sehr reaktionsfreudige Form des Kohlendioxids hergestellt werden kann. Die Ergebnisse sind vorab online erschienen und werden bald in der Druckausgabe des Fachjournals „Angewandte Chemie“ vorgestellt.

Die Natur macht es dem Menschen tagtäglich vor, wie sich auf elegante Weise das Kohlendioxid aus der Luft binden und in einen dringend benötigten Rohstoff umwandeln lässt. Mit ihren grünen Blättern betreiben die Pflanzen bei Lichteinstrahlung Fotosynthese. Aus Kohlendioxid und Wasser entstehen mit Hilfe des Sonnenlichts Sauerstoff und der dringend benötigte Energie- und Baustofflieferant Zucker.

„Diesem Vorbild eifert der Mensch schon lange nach, um Kohlendioxid zum Beispiel auch für die chemische Industrie zu nutzen“, sagt Prof. Dr. Peter Vöhringer vom Institut für Physikalische und Theoretische Chemie der Universität Bonn. Was das Konzept schwer umsetzbar macht ist, dass sich das Kohlendioxid kaum dazu bewegen lässt, neue Partnerschaften mit anderen Molekülen einzugehen.

Mit seinem Team hat der Physikochemiker nun einen neuen Weg entdeckt, wie das reaktionsträge und schwer zu bindende Treibhausgas in einer sehr reaktionsfreudigen Variante hergestellt werden kann. Die Forscher nutzten einen sogenannten Eisenkomplex: Im Zentrum befindet sich ein positiv geladenes Eisenatom, an dem mehrfach die Bestandteile des Kohlendioxids bereits gebunden sind. Die Wissenschaftler schossen ultrakurze Laserpulse aus ultraviolettem Licht auf diesen Eisenkomplex, wodurch bestimmte Bindungen aufgebrochen wurden. Als Produkt entstand ein sogenanntes Kohlendioxid-Radikal, das auch mit einer gewissen Radikalität neue Verbindungen eingeht.

Solche Radikale verfügen in ihrer äußeren Hülle über ein einzelnes Elektron, das dringend mit einem anderen Molekül oder Atom eine dauerhafte Bindung eingehen möchte. „Es ist dieses ungepaarte Elektron, welches unser reaktionsfreudiges, an das zentrale Eisenatom gebundene Radikal-Anion von dem reaktionsträgen Kohlendioxid unterscheidet und für chemische Prozesse so vielversprechend macht“, erläutert Erstautor Steffen Straub aus Vöhringers Team. Die Radikale könnten wiederum die Grundbausteine für interessante chemische Produkte darstellen, wie zum Beispiel Methanol als Treibstoff oder Harnstoff für chemische Synthesen sowie Salicylsäure als Schmerzmedikament.

Spektrometer zeigt Moleküle bei der Arbeit

Mit ihrem Laser und Infrarotspektrometer, einer großen Apparatur im Keller des Instituts, schauen die Wissenschaftler den Molekülen quasi bei der Arbeit zu. Sie können damit die Verbindungen aus unterschiedlichen Atomen anhand eines „Fingerabdrucks“ identifizieren, indem das Spektrometer die charakteristischen Schwingungen der Moleküle misst. „Bei der Bildung des Kohlendioxid-Radikals innerhalb des Eisen-Komplexes verändern sich die Bindungen zwischen den Atomen, und dadurch verringert sich die Frequenz der für das Kohlendioxid typischen Schwingung“, erklärt Straub.

Mit kriminalistischem Spürsinn wiesen die Wissenschaftler nach, dass durch die Laserpulse tatsächlich das reaktionsfreudige Kohlendioxid-Radikal entsteht. Zunächst simulierte das Team am Rechner die Schwingungsspektren der Moleküle, anschließend verglich es die Berechnungen mit den Messungen – und in der Tat: Simulation und Experiment stimmten sehr gut überein. Wie in einem „Molekülkino“ schoss das Spektrometer „Schnappschüsse“ in der unvorstellbaren zeitlichen Auflösung von Millionstel Milliardstel Sekunden. Anhand der Spektren – die den Einzelbildern eines Films entsprechen – lässt sich deshalb gleichsam in Zeitlupe nachweisen, wie sich der Eisenkomplex unter Laserbeschuss über mehrere Stufen verformt, die Bindungen aufbrechen und schließlich das Radikal entsteht.

„Unsere Ergebnisse haben das Potenzial, die Vorstellungen darüber, wie man das Treibhausgas Kohlendioxid der Atmosphäre entziehen und daraus wichtige chemische Produkte herstellen könnte, grundlegend zu verändern“, sagt Vöhringer. Allerdings müssten für einen großtechnischen Einsatz noch geeignete Katalysatoren entwickelt werden, weil für eine Umwandlung im großen Maßstab Laserpulse nicht effizient seien. „Unsere Ergebnisse liefern jedoch Anhaltspunkte dafür, wie ein solcher Katalysator designt werden müsste“, ergänzt der Wissenschaftler. Die aktuelle Studie sei übergreifend in den wichtigen Schlüsselforschungsbereichen zur Nachhaltigkeit und zugleich zur Materieforschung der Universität Bonn angesiedelt.

Publikation: Steffen Straub, Paul Brünker, Jörg Lindner, and Peter Vöhringer: An Iron Complex with a Bent, O-Coordinated CO2-Ligand Discovered by Femtosecond Mid-Infrared Spectroscopy, Angewandte Chemie (DOI: 10.1002/ange.201800672) und Angewandte Chemie International Edition (DOI: 10.1002/anie.201800672)

Quelle: Pressemitteilung Universität Bonn, 15.03.2018[:]