[:en]
Bioplastics are often promoted as an environmentally and climate-friendly alternative to conventional petroleum-based plastics. However, a recent study from the University of Bonn suggests that shifting to plant-based plastics could have less positive effects than expected. Specifically, an increased consumption of bioplastics in the following years is likely to generate increased greenhouse gas emissions from cropland expansion on a global scale. The study is published in the scientific Journal “Environmental Research Letters”.
Plastics are usually made from petroleum, with the associated impacts in terms of fossil fuel depletion but also climate change: The carbon embodied in fossil resources is suddenly released to the atmosphere by degradation or burning, hence contributing to global warming. This corresponds to about 400 million metric tonnes of CO2 per year worldwide, almost half of the total greenhouse gases that Germany emitted to the atmosphere in 2017. It is estimated that by 2050, plastics could already be responsible for 15% of the global CO2 emissions.
Bioplastics, on the other hand, are in principle climate-neutral since they are based on renewable raw materials such as maize, wheat or sugar cane. These plants get the CO2 that they need from the air through their leaves. Producing bioplastics therefore consumes CO2, which compensates for the amount that is later released at end-of-life. Overall, their net greenhouse gas balance is assumed to be zero. Bioplastics are thus often consumed as an environmentally friendly alternative.
But at least with the current level of technology, this issue is probably not as clear as often assumed. “The production of bioplastics in large amounts would change land use globally,” explains Dr. Neus Escobar from the Institute of Food and Resource Economics at the University of Bonn. “This could potentially lead to an increase in the conversion of forest areas to arable land. However, forests absorb considerably more CO2 than maize or sugar cane annually, if only because of their larger biomass.” Experience with biofuels has shown that this effect is not a theoretical speculation. The increasing demand for the “green” energy sources has brought massive deforestation to some countries across the tropics.
Dr. Neus Escobar and her colleagues Salwa Haddad, Prof. Dr. Jan Börner and Dr. Wolfgang Britz have simulated the effects of an increased demand for bioplastics in major producing countries. They used and extended a computer model that had already been used to calculate the impacts of biofuel policies. It is based on a database that depicts the entire world economy.
“For our experiment, we assume that the share of bioplastics relative to total plastic consumption increases to 5% in Europe, China, Brazil and the USA,” she explains. “We run two different scenarios: a tax on conventional plastics compared with a subsidy on bioplastics.” The most dramatic effects are found for the tax scenario: As fossil-based plastics consequently become considerably more expensive, the demand for them falls significantly. Worldwide, 0.08% fewer greenhouse gases would be released each year. However, part of this decline is due to economic distortions, as the tax also slows economic growth.
More fields, fewer forests
At the same time, the area of land used for agriculture increases in the tax scenario, while the forest area decreases by 0.17%. This translates into enormous quantities of CO2 being emitted into the atmosphere. “This is considered to occur as a one-time effect,” Escobar explains. “Nevertheless, according to our calculations, it will take more than 20 years for it to be offset by the savings achieved by fossil substitution.”
All in all, it takes a lot of time for the switch to bioplastics to pay off. Furthermore, the researchers estimate the societal costs of this policy to decrease one tonne of CO2 at more than 2,000 US dollars – a high sum as compared to biofuel mandates. A subsidy to bioplastics would have very different effects on the global economy. However, both the compensation period and the costs for climate change mitigation would remain almost the same as with the tax.
“Consuming bioplastics from food crops in greater amounts does not seem to be an effective strategy to protect the climate,” said the scientist. Especially because this would trigger many other negative effects, such as rising food prices. “But this would probably look different if other biomass resources were used for production, such as crop residues,” says Escobar. “We recommend concentrating research efforts on these advanced bioplastics and bring them to market.”
The belief that bioplastics will reduce the amount of waste in the oceans may not even come true. Just because plastics are made from plants does not automatically make them easily degradable in marine environments, Escobar emphasizes. “Bio-PE and Bio-PET are for example not biodegradable, same as their petroleum-based counterparts.” Bioplastics and biomaterials have however one clear advantage: They help to reduce the fossil fuel dependency of highly industrialized regions. The scientists conclude that if governments really want to protect the environment, they should rather pursue a different strategy: It makes more sense to use plastic sparingly and to ensure that it is actually recycled.
Publication: Neus Escobar, Salwa Haddad, Jan Börner and Wolfgang Britz: Land use mediated GHG emissions and spillovers from increased consumption of bioplastics; Environmental Research Letters; https://doi.org/10.1088/1748-9326/aaeafb
Source: Notification Rheinische Friedrich-Wilhelms-Universität Bonn, 07.12.2018[:de]
Bioplastik wird gerne als umwelt- und klimafreundliche Alternative zu herkömmlichen Kunststoffen auf Erdölbasis vermarktet. Eine Analyse der Universität Bonn legt nun aber nahe, dass eine Umstellung auf pflanzenbasierte Kunststoffe weniger positiv wirken könnte als gedacht. So dürfte eine steigende Nutzung von Bioplastik den weltweiten Ausstoß von Treibhausgasen zunächst sogar erhöhen. Die Studie erscheint in den „Environmental Research Letters“, ist aber bereits online abrufbar.
Plastik wird normalerweise aus Erdöl hergestellt. Mit negativen Folgen für das Weltklima: Das in ihnen gebundene Kohlendioxid wird beim Abbau frei und trägt so zur globalen Erwärmung bei. Weltweit gelangen so jährlich rund 400 Millionen Tonnen CO2 in die Atmosphäre – halb so viel, wie Deutschland 2017 insgesamt in die Luft blies. 2050 könnten Kunststoffe nach Schätzungen bereits für 15 Prozent der weltweiten CO2-Produktion verantwortlich sein.
Bioplastik dagegen ist nahezu klimaneutral, da es auf nachwachsenden Rohstoffen wie Mais, Weizen oder Zuckerrohr basiert. Für ihr Wachstum benötigen diese Pflanzen Kohlendioxid, das sie der Luft entnehmen. Die Herstellung von Biokunststoffen verbraucht daher CO2, und zwar genauso viel, wie später bei ihrer Verbrennung oder Verrottung wieder frei wird. Insgesamt ist ihre Klimagas-Bilanz daher ausgeglichen. Bioplastik wird daher gerne als umweltfreundliche Alternative vermarktet.
Doch zumindest beim augenblicklichen Stand der Technik ist die Sache wohl nicht so klar wie oft angenommen. „Die Erzeugung großer Mengen Bioplastik verändert die Landnutzung“, erklärt Dr. Neus Escobar vom Institut für Lebensmittel- und Ressourcenökonomik der Universität Bonn. „Global gesehen könnten dadurch zum Beispiel vermehrt Waldflächen zu Ackerland umgewandelt werden. Wälder binden aber erheblich mehr Kohlendioxid als etwa Mais oder Zuckerrohr, schon allein aufgrund ihrer größeren Biomasse.“ Dass dieser Effekt keine theoretische Spekulation ist, zeigen die Erfahrungen mit Biokraftstoffen. Die steigende Nachfrage nach der „grünen“ Energiequelle hatte in manchen Ländern massive Waldrodungen zur Folge.
Dr. Neus Escobar und ihre Kollegen Salwa Haddad, Prof. Dr. Jan Börner und der Privatdozent Dr. Wolfgang Britz haben die Auswirkungen einer vermehrten Verwendung von Bioplastik simuliert. Dazu nutzten und erweiterten sie ein Computermodell, das auch schon zur Berechnung der Biokraftstoff-Effekte eingesetzt wurde. Es basiert auf einer Datenbank, die die gesamte Weltwirtschaft abbildet.
„Wir haben für unser Modell die Annahme getroffen, dass der Bioplastik-Anteil bei den wichtigsten Produzenten – Europa, China, Brasilien und den USA – auf fünf Prozent steigt“, erklärt sie. „Dabei haben wir zwei verschiedene Szenarien durchgespielt: eine Steuer auf konventionelle Kunststoffe gegenüber einer Subvention für Bioplastik.“ Am dramatischsten waren die Auswirkungen im Steuer-Szenario: Da dadurch herkömmlich hergestellte Kunststoffe erheblich teurer wurden, sank die Nachfrage nach ihnen deutlich. Weltweit wurden so pro Jahr 0,08 Prozent weniger Klimagase ausgestoßen. Allerdings ist ein Teil dieses Rückgangs auf ökonomische Verwerfungen zurückzuführen, da die Steuer insgesamt das Wirtschaftswachstum bremste.
Mehr Äcker, weniger Wälder
Gleichzeitig stieg in diesem Szenario die landwirtschaftlich genutzte Fläche, während die Waldfläche um 0,17 Prozent abnahm. Dadurch gelangten enorme Mengen Treibhausgase in die Atmosphäre. „Dabei handelt es sich zwar nur um einen einmaligen Effekt“, erklärt Escobar. „Dennoch dauert es nach unseren Berechnungen mehr als 20 Jahre, bis er durch die erzielten Einsparungen wettgemacht wird.“
Insgesamt braucht es also einen langen Atem, damit sich die Umstellung auf Bioplastik auszahlt. Zudem beziffern die Forscher die Kosten dieser Strategie auf mehr als 2.000 Dollar pro Tonne Treibhausgas – eine vergleichsweise hohe Summe. Eine Subvention von Bioplastik hätte zwar in vielen Punkten deutlich unterschiedliche Effekte. An der Kompensations-Zeit von gut 20 Jahren und den Kosten für die Klimagas-Reduktion würde sich aber auch hier wenig ändern.
„Eine vermehrte Verwendung von Bioplastik aus Nutzpflanzen scheint also keine effiziente Strategie zu sein, das Klima zu schonen“, betont die Wissenschaftlerin. Zumal sie eine Reihe weiterer Negativ-Effekte hätte, etwa steigende Nahrungsmittel-Preise. „Das sähe aber vermutlich anders aus, wenn zur Herstellung zum Beispiel pflanzliche Abfälle genutzt würden“, sagt Escobar. „Wir empfehlen, die Forschungsanstrengungen auf dieses Bioplastik der zweiten Generation zu konzentrieren und es so zur Marktreife zu bringen.“
Auch die Hoffnung, dass durch Bioplastik die Vermüllung der Weltmeere abnehme, müsse sich nicht notwendigerweise erfüllen. Kunststoffe aus Pflanzen seien nicht automatisch leichter abbaubar als solche aus Erdöl, betont Escobar. „Bio-PE und Bio-PET verrotten genauso schlecht wie ihre Pendants auf Erdöl-Basis.“ Einen Vorteil habe Bioplastik allerdings: Es schone die immer knapper werdenden fossilen Brennstoffquellen. Wer die Umwelt schützen wolle, solle aber eher auf eine andere Strategie setzen, ziehen die Wissenschaftler ein Fazit: Sinnvoller sei ein materialsparender Umgang mit Plastik und ein möglichst vollständiges Recycling.
Publikation: Neus Escobar, Salwa Haddad, Jan Börner und Wolfgang Britz: Land use mediated GHG emissions and spillovers from increased consumption of bioplastic; Environmental Research Letters; https://doi.org/10.1088/1748-9326/aaeafb
Die Grafik zeigt den prognostizierten Rückgang der Waldflächen in verschiedenen Regionen unter der Annahme, dass durch Besteuerung konventioneller Kunststoffe der Anteil von Bioplastik auf fünf Prozent steigt. Je dunkler die Einfärbung, desto stärker ist der Waldverlust. In den am stärksten betroffenen Gebieten geht bis zu einem Prozent der Waldfläche verloren. https://cams.ukb.uni-bonn.de/presse/pm-329-2018/images/forest-tax_legende.jpg
Quelle: Mitteilung Rheinische Friedrich-Wilhelms-Universität Bonn, 07.12.2018[:]